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Abstract: We investigate by molecular dynamics (MD) simulations the temperature dependence of the
Debye-Waller (DW) factor of hexagonal ice with 25 different proton-disordered configurations. Each initial
configuration is composed of 288 water molecules with no net dipole moment. The intermolecular interaction
of water is described by TIP4P potential. Each production run of the simulation is 15 ns or longer. We
observe a change in slope of the DW factor around 200 K, which cannot be explained within the framework
of either classical or quantum harmonic approximation. Configurations generated by MD simulations are
subjected to the steepest descent energy minimization. Analysis of the local energy minimum structures
reveals that water molecules above 200 K jump to other lattice sites via some local energy minimum
structures which contain some water molecules sitting on the locations other than the lattice sites. As time
evolves, these defect molecules move back and forth to the lattice sites yielding defect-free structures.
Those motions are responsible for the unusual increase in the DW factor at high temperatures. In making
a transition from an energy-minimum structure to another one, a small number of water molecules are
involved in a highly cooperative fashion. The larger DW factor at higher temperature arises from jump-like
motions of water molecules among these locally stable configurations which may or may not be a family
of the proton-disordered ice forms satisfying the “ice rule”.

1. Introduction

In recent years, there has been renewed experimental and
theoretical interest in unraveling the intricacies of describing
the equilibrium and dynamical characteristics of supercooled
and glassy states of matter.1-3 Some unique features of glass-
forming liquids include the non-Arrhenius nature of relaxation
time with temperature, the apparent relation between the
correlation time and the liquid entropy, and the hypothetical
Kauzmann temperature (the temperature where the entropy of
the supercooled liquid has an intersection with the crystalline
entropy and the stretched exponential relaxation of the time
dependence of measurable quantities).1-3

Recently, a phenomenon associated with a glasslike transition
has been exhibited by the temperature dependence of the mean-
squared displacement or the Debye-Waller (DW) factor.1 A
distinctive change in the slope of the DW factor at low
temperatures is observed for a number of glass-forming liquids1,4

and proteins5,6 by using a variety of techniques such as neutron4

and X-ray scattering,5 Mossbauer spectroscopy,7 and computer
simulations.8 A number of interpretations have been advanced
to explain this phenomenon. The change in slope of the DW
factor has been attributed to a crossover from harmonic to
anharmonic dynamics,1,9,10 the notion of soft phonons,11 and
the onset of inelastic processes and further elucidated by mode
coupling analysis.4,12

The DW factor for crambin crystals has been measured in a
range of temperatures between 100 and 240 K with considerable
accuracy by high-resolution (between 0.67 and 0.89 Å) X-ray
crystallography.13 These measurements indicate a change in
slope of the DW factor around 200 K. The slope of the
disordered side chains of crambin is indistinguishable from that
of water below 200 K.13 Furthermore, the slope of the DW factor
for oxygen atoms against temperature in hexagonal ice (ice Ih)
is close to that of the ordered crambin atoms above 200 K,
suggesting that the ordered interior of protein behaves dynami-
cally like that of ice.13,14The observed glass transition in proteins
depends on hydration, i.e., the solvent content.4-6,8-10,12,13
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In this paper, we investigate by molecular dynamics (MD)
simulation the temperature dependence of the DW factor for
hexagonal ice (ice Ih) with 25 different proton-disordered
configurations. The details of the simulation and the methodol-
ogy used to evaluate the DW factor are described in the Section
2. In Section 3, we present the results of the DW factor
calculated over a wide range of temperature for the TIP4P15

ices within the framework of classical and quantum harmonic
approximation and of the classical MD simulations that include
anharmonic interactions.

2. Theoretical Methods

The temperature dependence of the DW factor of ice Ih is
investigated for 25 different proton-disordered configurations that were
generated by a technique discussed in ref 16 and compared with
experimental data.13,14 Each configuration is composed of 288 water
molecules with no net dipole moment. The intermolecular interaction
is mainly described by the TIP4P potential15 since it can reproduce
well various properties of not only liquid water but also low-pressure
ices.17-19 The apparent weakness of this potential is that it is pairwise
additive although it includes higher body interactions in an effective
manner. Therefore, it is important to examine DW factors by using
other model potentials, which are simple but different in functional
form and/or geometry. The SPC/E is one of the best potential models
with only three interaction sites.20 Its negative charge is placed on the
oxygen atom and the HOH bond angle is 109.5°. The CC potential is
a revised version of its predecessor having same functional form in
which only the pair interaction is taken into account.21 We have also
examined those two potentials.

A series of MD simulations containing 288 water molecules in the
canonical ensemble at constant temperature, with no volume fluctua-
tions,22 are performed for 25 proton-disordered structures of ice Ih.
Temperature is controlled by the Nose method.22 The density at a given
temperature is fixed to a constant value, which is determined by the
preceding Monte Carlo simulation at constant temperature-pressure.23

This choice of ensemble is appropriate to calculate the DW factors
since molecular displacements arise solely from the vibrational motions
and do not include those corresponding to motions of the lattice sites
by the volume fluctuation. The temperature is set to a range from 150
to 250 K. The density decreases with increasing temperature in the
temperature range examined here. We are not interested in a range of
very low temperatures where the thermal expansively of ice is negative.
This characteristic of the negative thermal expansion coefficient has
been attributed to quantum effects that are inherent at low tem-
peratures.24 The time step for integration of the equations of motion
is 4 × 10-16 s. Each production run is 15 ns except for an initial
configuration (30 ns).

The DW factor originating from the harmonic vibrations is calculated
by the following statistical mechanical treatment. The system is
described by a collection of harmonic oscillators with reference to the
corresponding local energy minimum structure. The Hamiltonian of
the ice is assumed to be harmonic as

whereUq is the potential at the minimum,h is Planck’s constant,νi is
the frequency of thei-th mode, andni is the quantum number for the
i-th vibrational mode. Since the coordinates∆r in real space are related
to the collective coordinateq by

We useS, the square root of the mass matrixm, which may contain
finite off-diagonal elements and denote theij -element ofU† andS by
uij andsij, respectively, to obtain

The angular brackets denote thermal average. The average of thel-th
normal coordinate〈ql

2〉 is defined by

whereF is the density matrix of the entire system. Since all the modes
are completely independent,〈qlqm〉 ) 0 for l * m, and we obtain

In the above equations,â is 1/kBT where kB is the Boltzmann
constant. In classical statistical mechanics, the mean-squared displace-
ment of thel-th vibrational mode is expressed in terms of its frequency
νl: 〈ql

2〉 ) kBT/(2πνl)2; substituting this relation in eq 5a leads to the
desired expression for the mean-squared displacement of the individual
molecules.

Several comments are in order regarding our methodology. First,
the configurations generated by molecular dynamics simulations are
quenched to the local energy minimum structures. Second, the normal-
mode analysis is obtained by diagonalizing the corresponding mass
weighted second derivative of the potential function but evaluated at
the local energy minimum structures unless otherwise mentioned. Third,
we calculate the mean-square displacements for just the oxygen atoms,
since this is appropriate for comparison with X-ray diffraction data.
Since eq 3 gives the mean-square displacements of the center-of-mass
coordinates and Euler angles separately, these are transformed into the
atomic displacements,∆r, assuming the orientational displacements are
small, which is always the case for water molecules.

3. Results and Discussion

Figure 1a shows the DW factor as a function of temperature
for TIP4P ices. We observe that there is a change in slope of
the DW factor around 200 K (or a little higher). The larger value
for the DW factor does not mean melting of the ice. This is
because at temperatures below 250 K, the mean-square dis-
placement does not increase as the simulation proceeds, implying
that the system remains a solid. The melting point of TIP4P
water is known to be around 240 K, approximately 30 K lower
than that of real water.23,25 However, the TIP4P ice is stable
even at 250 K when started with an ice configuration. This is
due to the hysteresis effect expected for a first-order transition.
Ice structures are always broken into liquid water above 260
K. Thus, the break in the DW factor around 200 K is a real one
and could correspond to the break observed in experimental
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∆r ) m-1/2U†q (2)

〈∆ri
2〉 ) ∑j,k,l sijsikujlukl〈ql

2〉 (3)

〈ql
2〉 ) Tr(F(H)ql

2) (4)

〈ql
2〉 ) ∑nl F(nl)〈nl|ql2|nl〉 (5a)

F(nl) ) exp(-nlâhνl)[1 - exp(-âhνl)] (5b)

〈nl|ql
2|nl〉 ) h(nl +

1/2)/4π2νl (5c)

H ) ∑i(ni + 1/2)hνi + Uq (1)
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data.12,13 The small difference in temperature between experi-
mental and simulation data may be due to the smaller system
and the constraint on the simulation, as well as minor deficien-
cies in the intermolecular interactions used.

The DW factor has been calculated over a wide range of
temperatures for TIP4P ices within the framework of classical
and quantum harmonic approximation discussed above. Note
that the use of eq 5 for a fixed density is justified since we find
that small differences in density by thermal fluctuations do not
give rise to noticeable differences in the DW factors. As Figure
1b shows, quantum treatment of the DW factor exhibits a fairly
different characteristic near 0 K; the DW factor levels off with
decreasing temperature and it remains a finite value on ap-
proaching 0 K. This is due to contributions from the zero-point
vibrational energy in the low-temperature range. The classical
DW factor, however, approaches the quantum behavior at
temperatures higher than 150 K.

Two comments deserve mentioning. First, the experimentally
observed changes in the DW factor cannot be explained within
the framework of the harmonic approximation. Second, the small
difference in the predictions for the DW factor between the
quantum and the classical treatment in the high-temperature
region suggests that a classical MD simulation that includes

anharmonic interactions is likely to be adequate in examining
the origin and the break in the DW factor.

We have examined time evolution of one proton-disordered
ice structure in more detail by performing MD simulation for
30 ns at 270, 250, 230, and 200 K. The generated configurations
are recorded at an interval of 20 ps. These configurations are
subjected to the steepest descent energy minimization. The local
energy minimum structures so obtained are hereafter called
Q-structures and correspond to the potential energy basin centers
in configuration space. At temperatures such as 270 K, which
is much higher than the melting point of TIP4P ice, the ice
structures melt into liquid water in a few tens of picoseconds.
Thus, no attention will hereafter be paid to the systems at
temperatures higher than 250 K. The potential energy of the
Q-structures at 250 K is plotted as a function of time in Figure
2. The potential energy gradually decreases and arrives at a
limiting value for 30 ns. This is caused by rearrangement of
water molecules via structures containing some defects in
hydrogen bonds as discussed later. This is interesting because
it may correspond to a process where proton ordering increases
although the ordering is only partial.

Seki and co-workers have experimentally detected freezing
of the entropy decrease in ice Ih with decreasing temperature26

at around 100 K. It is expected to take more than several hundred
days for the complete ordering. However, the local rearrange-
ment at high temperature takes place in a short time period
perhaps as quickly as a few nanoseconds as shown in the present
study. This fast relaxation at high temperature has been achieved
because it is accompanied by a fairly large energy decrease and
the number of available configurations is limited for a system
containing a rather small number of molecules. Even after
reaching the low-energy limiting state, the system visits various
Q-structures whose energy levels are a little higher than the
limiting state. This limiting state is not retained for a long time
and the system finds further higher energy states.

In the process of lowering the potential energy, it is found
that water molecules sometimes jump to other lattice sites via
intervening structures in which there are a few defects in the
location of molecules and the hydrogen bond network. These
intervening structures have water molecules that have less than
four hydrogen-bonded neighbors, and a few molecules are
located at off-lattice site positions. Thus, the total number of

(26) Haida, O.; Matsuo, T.; Suga, H.; Seki, S.Proc. Jpn. Acad.1972, 48, 237.

Figure 1. The mean-squared displacement (MSD) in Å2, i.e., the Debye-
Waller factor for hexagonal ice averaged over 25 proton-disordered
configurations, is plotted against temperature. The solid line in part a denotes
the DW factor obtained from MD simulation with error bars, the dotted
line denotes the corresponding DW factor in the classical harmonic
approximation, while the dot-dash is the quantum harmonic approximation.
The harmonic DW factors are magnified in part b.

Figure 2. The time evolution of the potential energy of local minima for
30 ns run at three different temperatures.
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hydrogen bonds is slightly less than 2N, whereN is the number
of water molecules in ice. Yet, these structures are mechanically
stable and therefore belong to Q-structures. These structures
are not a family of the proton-disordered ice forms satisfying
the “ice rule” completely.27 That is, an ice form having defects
in the hydrogen bond network can constitute a stable point in
a limited region in configuration space. Some examples of ice
structures containing a few defects are shown in Figure 3. The
number of defects is very small and most of the molecules are

located at the lattice sites. Thus, the whole system can be viewed
as a crystalline form with a few defects. These local energy
minimum structures with some defects are not unique to the
present potential, but are observed for CC and SPC/E models
of water. It is also found that only a small number of water
molecules are involved when a transition from a Q-structure to
another one is made.

The system begins to leave the initial potential basin at 250
K visiting many potential basins with no defects as well as
potential basins with defects. It should be noted that the potential
energy gradually decreases as time elapses. The intervening
basins with defects are rather easily passed by at this temper-
ature. After reaching the apparent limiting energy, the system
sometimes visits higher energy states. The local minimum
potential energy curves for five proton-disordered structures for
a 15 ns run are plotted in Figure 4. A similar potential energy
fluctuation to that plotted in Figure 2 and its gradual decrease
with time are seen for all five proton-disordered structures.

When the temperature is decreased to 230 K, molecules still
move frequently from the initial potential basins to adjacent
ones, which may include some defects in the hydrogen bond
network but belong to one of potential basin centers. Examina-
tion of the MD trajectories at 230 K shows that the system
undergoes many transitions (but less frequently than at 250 K)
to other configurations either satisfying or violating the “ice
rule”. The system visits nearby potential basins for a while with
defects or without defects at this temperature, and then may
return to the initial basin. The system has sufficient kinetic
energy to surmount the activation energy barrier to lead to an
adjacent basin with defects but does not have to go to the lower
energy state within 30 ns. The larger DW factor at 250 K than
that at 230 K is attributed not to the systematic decrease in
potential energy but to the more frequent transitions.

There is almost no exchange of hydrogen-bonded partners
at 200 K as shown in Figure 2; it occurs a few times during the
whole simulation run. Thus, molecular motions are restricted
mostly to vibrational motions, which dominate the DW factor
at this temperature. This does not, however, exclude the very
slow proton-ordering motions below 200 K.

In the solid state, the mobility of the molecules is generally
zero except for very infrequent jump motions to other lattice
sites. However, the jump-like motions from one lattice site to
another in ice Ih lead to the larger DW factor above 200 K. If
this is the case, such a motion is accompanied by a passage
through the energy barrier region in configuration space. Thus,
the number of imaginary vibrational modes along the MD
trajectory at a given instant is an indicator of the transition
between two energy basins, although some imaginary modes
certainly do not lead to other energy basins.28-30 To see this,
we have performed (instantaneous) normal-mode analysis of
the system generated by MD simulations and identified the
imaginary frequency modes. Figure 5 is a plot of the percentage
of imaginary frequency modes versus temperature. The percent-
age of the imaginary frequency modes decreases almost linearly
with a decrease in temperature. However, there is a change in
the slope around 200 K (the temperature region where the break
in the DW factor was observed). The change in the slope is
ascribed to the onset of an appreciable number of the jump-
like motions to other mechanically stable structures.
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Figure 3. A snapshot of the ice configuration at 250 K. The basic cell has
been divided into three sub-boxes, each of which contains 96 molecules.
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4. Summary

In this paper we have carried out classical MD simulations
at constant temperature with no volume fluctuations to examine
the temperature dependence of the DW factor of ice Ih with 25
different proton-disordered configurations. We observe a break
in slope of the DW factor around 200 K, which cannot be
explained within the framework of either classical or quantum
harmonic approximation. Analysis of the local energy minimum
structures shows that water molecules sometimes jump to other
lattice sites via intervening mechanically stable structures in
which there are a few defects in the location of molecules and
the hydrogen bond network. These intervening ice structures

belong to Q-structures but are not a family of the proton-
disordered ice forms satisfying the “ice rule” completely, that
is, they contain several water molecules having less than four
hydrogen-bonded neighbors, and some molecules are located
in regions other than the lattice sites, yet almost all the molecules
occupy their lattice sites. The break in the DW factor indicates
the onset temperature above which jump-like motions between
those Q-structures dominate.

We do not observe frequent transitions from one configuration
to another below 200 K. In this temperature range, the DW
factor is small and is due mainly to the vibrational motions.
Even though such a transition is very slow compared with our
simulation time scale, it is experimentally observed down to
100 K. The results presented here indicate there is considerable
evidence supporting that the mechanism just above 100 K is
the same as that at the temperature where a change in slope of
the DW factor is observed. The change in slope of the DW
factor depends on the frequency of the transition (a transition
that is not suppressed at low temperatures, although its occur-
rence is a rare event). It is confirmed from an additional MD
simulation that such transitions are also observed for a larger
system containing 2304 molecules (8 times larger than the
systems we have examined above). We note, in passing, this
break may be associated with the two-step sequence of hydrogen
bond breaking, although the modeling of water is different.31
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Figure 4. The time evolution of the potential energy of local minima for 15 ns run at 250 K for each of the five proton disordered structures labeled (a)-(e).

Figure 5. The percentage of imaginary frequency modes is plotted versus
temperature. Normal-mode analysis is done for configurations generated
by MD simulations.
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